Robustness Analyses of Instance-Based Collaborative Recommendation
نویسنده
چکیده
Collaborative recommendation has emerged as an effective technique for a personalized information access. However, there has been relatively little theoretical analysis of the conditions under which the technique is effective. We analyze the robustness of collaborative recommendation: the ability to make recommendations despite (possibly intentional) noisy product ratings. We formalize robustness in machine learning terms, develop two theoretically justified models of robustness, and evaluate the models on real-world data. Our investigation is both practically relevant for enterprises wondering whether collaborative recommendation leaves their marketing operations open to attack, and theoretically interesting for the light it sheds on a comprehensive theory of collaborative recommendation.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA Robust Collaborative Filtering Recommendation Algorithm Based on Multidimensional Trust Model
Collaborative filtering is one of the widely used technologies in the e-commerce recommender systems. It can predict the interests of a user based on the rating information of many other users. But the traditional collaborative filtering recommendation algorithm has the problems such as lower recommendation precision and weaker robustness. To solve these problems, in this paper we present a rob...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کامل